Blockwise Subspace Identification for Active Noise Control
نویسندگان
چکیده
In this paper, a subspace identification solution is provided for Active Noise Control (ANC) problems. The solution is related to so-called block updating methods, where instead of updating the (feedforward) controller on a sample by sample base, it is updated each time based on a block of N samples. The use of the subspace identification based ANC methods enables non-iterative derivation and updating of MIMO compact state space models for the controller. The robustness property of subspace identification methods forms the basis of an accurate model updating mechanism, using small size data batches. The design of a feedforward controller via the proposed approach is illustrated for an acoustic duct benchmark problem, supplied by TNO Institute of Applied Physics (TNO-TPD), the Netherlands. We also show how to cope with intrinsic feedback. A comparison study with various ANC schemes, such as block Filtered-U demonstrates the increased robustness of a subspace derived controller.
منابع مشابه
Active Noise Cancellation using Online Wavelet Based Control System: Numerical and Experimental Study
Reaction wheels (RWs) used for attitude control of space vehicle systems usually encounter with undesired wide band noises. These noises which significantly affect the performance of regulator controller must tune the review or review rate of RWs. According to wide frequency band of noises in RWs the common approaches of noise cancellation cannot conveniently reduce the effects of the noise. Th...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملRobust and fast schemes in broadband active noise and vibration control
The paper extends the subspace identification method to estimate state-space models from frequency response function (FRF) samples, proposed by [113] for mixed causal/anti-causal systems, and shows that other frequency domain subspace algorithms can be extended similarly. The method is demonstrated by simulation experiments. keywords: frequency domain identification, subspace method, descriptor...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملNonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کامل